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Fig. 1. IoTProsector helps users reason the internal states of black-box IoT devices (e.g., Google Home smart speaker) by
sensing side-channel information (e.g., power, emanations, and network traffic) and incorporating human understandings
with a user interface design, resulting in the human-generated finite state machine (FSM) of the IoT device.

Internet of Things (IoT) devices are typically designed to function in a secure, closed environment, making it difficult for users
to comprehend devices’ behaviors. This paper shows that a user can leverage side-channel information to reason fine-grained
internal states of black box IoT devices. The key enablers for our design are a multi-model sensing technique that fuses power
consumption, network traffic, and radio emanations and an annotation interface that helps users form mental models of a
black box IoT system. We built a prototype of our design and evaluated the prototype with open-source IoT devices and
black-box commercial devices. Our experiments show a false positive rate of 1.44% for open-source IoT devices’ state probing,
and our participants take an average of 19.8 minutes to reason the internal states of black-box IoT devices.
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Fig. 2. Don Norman owned a two-compartment refrigerator with two controls: a freezer and a refrigerator. To his surprise,
when he tried to make the freezer colder, it also made the refrigerator colder - even when he didn’t change the refrigerator
dial. Indeed, his mental model (option A) of how the cooling unit worked differed from how it actually worked (option B):
there was only one cooling unit with a valve that dispersed the air to each compartment, instead of two respective cooling
units. We adapt the image from [44].

1 INTRODUCTION
In "The Design of Everyday Things [38]", Don Norman used an example of a refrigerator (Fig. 2) to illustrate
that users often have wrong mental models of how products work. As described by Norman, users generate a
mental model for how their interactions affect the system and how the system affects them through reading
product descriptions and observing system behaviors. However, unlike the refrigerator example, many low-level
system behaviors in IoT devices are intangible. As a result, users have various questions regarding the internal
states of these devices, such as: "Do Amazon Echo devices really stop listening, when a user presses the mute
button [28]?", "Why do cameras stop recording after 30 minutes [21]?"

A number of HCI studies have tried to understand the mental models of smart home users. For example, Clark
et al. [19] found that different smart home abstractions have significant priming effects on users’ mental models.
Blase et al. examined whether trigger-action programming (e.g., IFTTT programs) captures smart home behaviors
that users actually desire [45]. In contrast to these studies, our work focuses on building a new tool to support
users in forming mental models of IoT devices. Particularly, we consider the side-channel information as a new
channel for understanding intangible system behaviors and designing interactions accordingly.
This paper presents IoTProsector, a system that leverages multimodal side-channel information (i.e., power

consumption, network traffic, and electromagnetic emanations) to help users understand the fine-grained internal
states of IoT devices. IoTProsector first records how an experimenter interacts with a target IoT device and
captures the side channel information generated along the process. By clustering the sensor data distributions
and analyzing the temporal transitions, IoTProsector then derives a finite state machine and helps experimenters
align the IoT device’s internal states with their mental models (Fig. 1).
IoTProsector has two key enablers. The first is a multi-model sensing technique that correlates the side-

channel information with the IoT device’s internal states. When the IoT device stays in different states, its power
consumption and generated network traffic differ. For example, the Nest Cam’s power consumption remained
almost identical when in "indicator-off" mode (340 mA) as when fully operational (370 mA) [41]. This slight
reduction correlates with the disabling of the LED power light, given that LEDs typically draw 10-20mA. Further,
the electromagnetic emanations are amplitude-modulated clock signals caused by the computation activities on
the IoT device, which can exhibit periodic spikes in the frequency domain, and their power spectral densities
correlate with the IoT device’s internal states. Therefore, we can fuse this side-channel information and leverage
machine learning models (e.g., k-means) to probe the IoT device’s internal states.
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Fig. 3. IoTProsector’s workflow consisting of state exploration, sensing, modeling, collaging, and step-wise verification fuses
the sensing model and human mental model for accurate and semantic IoT internal state probing.

Second, we develop an annotation user interface to bridge the gap between low-level states and high-level
mental models. For example, a smart speaker that plays music at different volumes may have distinct side-
channel information, but these states may share similar cognitive meanings. IoTProsector introduces a four-step
workflow (explore-model-collage-verify) to guide users in forming mental models using side-channel information.
IoTProsector begins by allowing users to blindly interact with the target IoT devices and collecting side-channel
information. IoTProsector then identifies unique states using the side-channel information and asks users to
merge redundant states. Finally, users verify the correctness of the mental model by interacting with the IoT
devices step-by-step.
We built a prototype of our design and evaluated the prototype with open-source IoT devices (Google AIY

Voice kits and Vision kits) and black-box commercial devices (Google Home). Our experiments show a false
positive rate of 1.44% for open-source IoT devices’ state probing, and our participants take an average of 19.8
minutes to reason the internal states of black-box IoT devices. Notably, it was observed that users’ ultimate mental
models, shaped by newly acquired side-channel information, continue to differ. This variation may be partly due
to the lasting impact of their initial mental models, which affect the way users revise their understanding [16].
Our main contribution is (1) an IoT probing system that can probe the internal states of the black box IoT

devices using the side-channel information; (2) a four-step workflow that can connect the low-level system
states to the high-level states in users’ mental model; (3) Our experimental results demonstrate the precision
of IoTProsector on probing IoT internal states. Our user study further confirms its capability to assist users in
annotating both precise and semantically meaningful IoT states.

2 OVERVIEW
In this section, we present the overview system design of IoTProsector, which mainly consists of two components.
Sensing.We develop a multi-modal sensing technique that leverages and fuses power consumption, network
traffic, and emanations to detect the internal states of IoT devices. Specifically, we extract statistical features
from the sensing data and apply the TSNE algorithm [48] to identify the significant features. We then use these
features to cluster the IoT device’s internal states through unsupervised machine-learning algorithms.
Annotation. Furthermore, we design an annotation user interface to bridge the gap between users’ cognitive
understanding and low-level machine states derived from side-channel information. We illustrate this process
shown in Fig. 3 as follows:

• Exploring. A user may first blindly explore the possible internal states of the given IoT device by
interacting with the IoT device based on the instructions illustrated in IoTProsector’s graphical user
interface. During the interaction, the sensing data generated by the IoT device are collected, and the
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Fig. 4. The clock signals are amplitude-modulated by the computation activity on the IoT device, resulting in the amplitude-
modulated clock signals that are termed emanations.

interaction actions, together with the IoT device’s behaviors, are video-tapped to facilitate the later
sense-making process.

• Modeling. In this process, the sensing data collected during exploration are utilized to extract statistical
features and then develop the sensing model. In addition, the transition events between the IoT device’s
states are employed to merge states, thereby reducing redundancy.

• Collaging. To further accurately and semantically probe the IoT device’s internal states, a visual and
interactive display showcasing the relationship between the sensing model and the human mental model,
along with the contextual information is provided to enhance the user’s understanding and aid in making
a collage of the IoT states. By utilizing this information, the user is expected to generate a sense-making
FSM that effectively characterizes the IoT device’s internal states.

• Verifying. After the internal states of the IoT device have been annotated and characterized, the user can
verify them using the generated finite-state machine. Specifically, a machine learning classifier is trained
based on the collaging results. Then, as the user interacts with the IoT device, the generated sensing data
can be classified into one of these internal states. This process enables the user to monitor and analyze
the states of the IoT device in real-time.

3 IOTPROSECTOR: SENSING

3.1 Side-channel Information Characterization
3.1.1 Power consumption and network traffic. Every IoT device drains energy either from the power line or battery
and the amount of the energy drained by the IoT device highly depends on the IoT device’s state. Even though
the network traffic data is usually encrypted, we can still use the network traffic pattern as the side-channel
information to probe the IoT devices’ internal states. This is because the network traffic introduced by the IoT
device highly depends on its state.

3.1.2 Emanations. Every IoT device introduces electromagnetic emanations, which are amplitude-modulated
clock signals. To identify these emanations from the IoT devices, we can perform a Fast Fourier Transform (FFT)
on the collected emanation signals. As a result, the FFT peaks are equally separated in the frequency domain.
Then, we use the power spectral density of these FFT peaks as our emanation features for IoT state probing.
Connecting emanations to internal fine-grained states. Every IoT device has its own clock for synchron-
ization purposes during the computation. The clock signals (i.e., electromagnetic waves) can emit over the
air directly, or go through the electronic components on the IoT device and emit over the air afterwards [43].
These clock signals can be further modulated by the computation activities on the IoT devices resulting in the
amplitude-modulated clock signals as shown in Fig. 4. Intuitively, when there is a computation activity, there is
clock signal leakage. Otherwise, there is no clock signal leakage. So, these clock signals are amplitude-modulated.
We term these amplitude-modulated clock signals as emanations.

Since the emanations are amplitude-modulated clock signals, these emanations can carry sensitive data
information about the IoT device’s internal states. Specifically, IoT devices’ states depend on the computation
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Fig. 5. Time-domain emanation signals from Google Home
smart speaker exhibit on-off property, as they are amplitude-
modulated clock signals.
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Fig. 6. Frequency-domain emanation signals from Google
Home smart speaker exhibit periodic spikes spread across
the spectrum, which can be leveraged to sense the IoT
device’s internal states using the spike’s power spectral dens-
ity.

activities conducted on them, which can be revealed by the emanations. So, we can predict the IoT devices’
internal states based on the received emanations. In the time domain, the emanations are squared waves as they
are amplitude-modulated clock signals, which can exhibit periodic spikes in the frequency domain.
Time-domain emanations. Since the emanations are amplitude-modulated clock signals, they will become the
squared waves in the time domain. Therefore, the time-domain emanations present the on-off property. The ideal
squared wave using Fourier expansion with a cycle frequency of 𝑓 over time 𝑡 can be represented as follows:

𝑥 (𝑡) = 4
𝜋

∞∑︁
𝑘=1

𝑠𝑖𝑛(2𝜋 (2𝑘 − 1) 𝑓 𝑡)
2𝑘 − 1

(1)

To demonstrate the on-off property of the time-domain emanations, Fig. 5 illustrates the emanations of the Google
Home smart speaker at the frequency band between 100MHz and 300MHz, which exhibit the on-off property
over time. This is because the emanations are amplitude-modulated clock signals.
Frequency-domain emanations. The amplitude-modulated clock signals (i.e., emanations) in the time domain
are the squared waves. When we do the Fast Fourier Transform (FFT) on the time-domain emanations, we will
have frequency-domain emanations, which will have one fundamental harmonic and other multiple harmonics
with decreasing power spectral densities. Specifically, the frequency-domain emanations can be represented as
follows:

𝑥 (𝑓 ) =
∞∑︁

𝑘=−∞

2𝑠𝑖𝑛(2𝜋𝑘 𝑓0𝑇 )
𝑘

𝛿 (𝑓 − 𝑘 𝑓0) (2)

where 𝑓0 = 1
𝑇
is the frequency of the fundamental harmonic, and 𝛿 (𝑓 −𝑘 𝑓0) indicates the harmonic component at

frequency of 𝑘 𝑓0 with amplitude of 2𝑠𝑖𝑛 (2𝜋𝑘𝑓0𝑇 )
𝑘

. As we can see, the squared wave consists of an infinite number
of sine wave components. Moreover, since the emanations are amplitude-modulated, they will spread over the
spectrum. Said differently, each sine wave component acts as a different carrier for the modulation signals.
Fig. 6 showcases the frequency-domain emanations of the Google Home smart speaker at the frequency band
between 100MHz and 300MHz. As we can see, each peak in the plot represents the intermediate frequency of the
harmonics, which are equally separated as the emanations are the amplitude-modulated clock signals.
The emanations propagate inside and outside the IoT device’s circuit. Suppose the leaked emanations at the

frequency of 𝑓𝑙 inside the circuit, which can amplitude modulate the clock signals at the frequency of 𝑓𝑐 . The RF
transceivers further shape the emanations at the carrier frequency of 𝑓𝑐𝑎𝑟𝑟𝑖𝑒𝑟 , resulting in the emanations emitted
over the air through the transceiver’s antennas. Therefore, the frequencies of the emanations received over the
air can be as follows:

𝑓𝑟 = 𝑝 · 𝑓𝑐𝑎𝑟𝑟𝑖𝑒𝑟 + 𝑞 · 𝑓𝑐 + 𝑟 · 𝑓𝑙 (3)
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Fig. 7. FFT of IQ samples, when the
Amazon Echo Dot is power-off.

300 350 400 450

Frequency (MHz)

-170

-165

-160

-155

P
o
w

e
r

(d
B

/H
z
)

Fig. 8. FFT of IQ samples, when the
Amazon Echo Dot is power-on.
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Fig. 9. FFT of IQ samples, when we in-
teract with the Amazon Echo Dot.
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Fig. 10. FFT of IQ samples, when the
Google Home smart speaker is power-
off.
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Fig. 11. FFT of IQ samples, when the
Google Home smart speaker is power-
on.
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Fig. 12. FFT of IQ samples, when we
interact with the Google Home smart
speaker.

where 𝑝, 𝑞, and 𝑟 are integers due to the mixing and amplification of the emanations. Note that not all of these
multiples are applied, which is highly dependent on the hardware architecture and components (e.g., filters) of
the circuit. Some IoT devices may even not have RF transceivers, thereby the emanations are emitted through the
data lines (i.e., acting as antennas) in the circuit. As we can see, the 𝑓𝑟 of the received emanations can be highly
dependent on 𝑓𝑙 due to the computing activities on the IoT device, which is dependent on the state of the device.
Therefore, we can leverage the frequency-domain analysis of the emanations to infer internal IoT states.

3.2 Feasibility Study
To demonstrate the feasibility of using the IoT device’s emanations for internal IoT state detection, we measure
the emanations from the Amazon Echo Dot and Google Home smart speaker. Specifically, Fig. 7, Fig. 8, and
Fig. 9 show the frequency-domain emanations from the Amazon Echo Dot, when it is power-off, power-on, and
interacting with people respectively. Fig. 10, Fig. 11, and Fig. 12 shows the frequency-domain emanations from
the Google Home smart speaker, when it is power-off, power-on, and interacting with people respectively. The
red circle indicates the detected FFT peaks on the frequency-domain emanations. As we can see, the Google
Home smart speaker and Amazon Echo Dot have different emanation patterns when they are in different states.
Moreover, the Google Home smart speaker and Amazon Echo Dot will exhibit different emanation patterns, even
though they are in the same state. This is because different IoT devices will have different emanations due to the
different hardware architectures.

3.3 Machine Learning-based IoT State Probing
Using the side-channel information collected over time during exploration, we compute features from this data
as the input for the sensing model to probe the IoT device’s internal states. As shown in Table 1, we list nine
statistical features that we can extract from this side-channel information. Specifically, we measure the time-series
network throughput for network traffic data collection, which will be used to derive the statistical features for
network traffic side-channel information. Similarly, we measure the time-series power consumption of the IoT
device in each state and derive the statistical features for power consumption side-channel information. However,
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Statistical features Description
MAV mean absolute value
VAR variance
RMS root mean square
Std standard deviation
MAD median absolute deviation

Skewness asymmetry of the data distribution
Kurtosis shape of the data distribution
IQR interquartile range

Energy average sum of the squares
Table 1. Statistical features for time-series power consumption, network traffic, and electromagnetic emanations over
frequencies.

for the emanation side-channel information, we first collect the time-domain IQ samples and further conduct Fast
Fourier Transform (FFT) to obtain the frequency domain signals. The intuition is that the IoT device’s states are
related to the power density of the spikes presented at the frequency domain IQ samples, which is illustrated in
the above section. Then, we use the power density of spikes presented in frequency domain signals as the series
of data streams to derive the statistical features. After we obtain the statistical features from all the side-channel
information, we concatenate them to formulate a vector. Since this three side-channel information could play a
different role in IoT state prediction, it’s important to only extract some important features to efficiently train the
machine learning models for IoT state prediction. Therefore, we concatenate these features and use the two most
important features determined by the t-SNE algorithm [46] as the input of unsupervised classification models
(i.e., k-means, DBSCAN, and GMM) for IoT state probing.

4 IOTPROSECTOR: ANNOTATION

4.1 Exploring
As the user interacts with an IoT device to explore its possible internal states, the side-channel information of this
IoT device (e.g., power consumption, network traffic, and emanations) is automatically generated and collected.
Simultaneously, the user-device interactions are recorded, which may cause the IoT device to transit from one
state to another. Given each IoT device has a finite set of states and possible transitions between states, a Finite
State Machine (FSM) can be used to effectively represent the IoT device’s states and the transition events between
states. Specifically, each node in the FSM represents the IoT state and the edge connecting two nodes represents
the transition event. This finite state machine can not only show the IoT device’s states and their transitions but
also clearly help users monitor the IoT device’s states over time.
Aiming at probing the internal states of the IoT device, we prompt the user to annotate each state following

every interaction with the IoT device. While a wide range of states are explored, the annotations of these
states depend on the user’s understanding based on their observations of the IoT device’s responses and their
interactions. For instance, while interacting with a Google Home smart speaker, one user might annotate the states
as ’question-answering’ and ’music-playing’ when asking about the weather and playing a song, respectively.
Another user, however, might annotate both states simply as ’responding’.

Therefore, even though more states are probed, they suffer from being less resilient to noise and misannotation,
which can introduce confusion on the IoT device’s internal state annotation and verification in the later stage.
As a result, the finite state machine is over-semantic or less-semantic. Fig. 13a shows the correlation matrix
derived from the sensing model and the human mental model. Each element in the correlation matrix indicates
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Fig. 13. Understanding human mental model-based IoT state annotation and sensing model-based IoT state representation
with correlation matrix and sensor data visualization in the exploring stage.

the percentage of the data points of human-annotated states that belong to the sensing model-generated cluster.
As we can see, the human mental model has generated multiple IoT states that are more than the number of IoT
states indicated by the sensing model. In other words, each cluster contains multiple human-annotated states. So,
there is a misinterpretation of the IoT device’s internal states for the sensing model and human mental model. To
be more visual, Fig. 13b shows the processed sensor data in a 2D plane with the TSNE algorithm [48], indicating
the IoT states annotated by the human model are over-semantic, as each sensing model-generated cluster may
contain multiple human-annotated states with the same semantics.

4.2 Modeling
Before the user engages in refining the FSM, we utilize two types of information to provide a better starting
point for the user. First, we leverage the transition events between states. Given that the same transition events
are likely to lead to the same state, they can be used as a hint to identify the IoT state with the same semantics.
For instance, whenever an user says a keyword (e.g., ’OK Google’) to start interacting with a Google Home
smart speaker, it may always enter the same state, waiting for further commands. Therefore, we merge the states
derived from the same transition event to reduce semantics redundancy. Second, we process the sensing data
collected during exploration to develop a sensing model as described in Sec 3. This sensing model offers insights
from the statistical perspective and classifies initial states into different clusters.
However, while the sensing model itself could serve as a direct characterization of the IoT device’s internal

states, it is challenging for an user to understand the meaning of internal state clusters without annotation,
which further hinders probing processes. Moreover, the FSM still suffers from inaccurate state representation.
This is because the same transition events may lead to different states, meaning the FSM may not accurately
correspond to the actual internal states of the IoT device. Fig. 14a shows the correlation matrix of the IoT device’s
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Fig. 14. The IoT states merging based on the transition states can be helpful for the semantic IoT states annotation.

states derived from the sensing model and human mental model after merging the states derived from the same
transition event. As we can see, despite the number of human-annotated states decreasing due to the merging of
states, merged states are still scattered across different clusters, which can also be demonstrated through the
scatter plot of the sensor data with the TSNE algorithm in Fig. 14b.

4.3 Collaging
To further accurately and semantically probe the internal states of the IoT device, we leverage the sensing model
since it can indicate the IoT states through the sensor data representation. As such, the sensor data representing
the IoT states with the same semantics can formulate a cluster and further be collaged as one state.
To this end, we integrate the sensor data representation from the sensing model with the annotations and

transition events from the mental model into a visual and interactive display. This display illustrates the rela-
tionship between mental model-introduced states and sensing model-introduced states through a correlation
matrix and a sensor data representation. Along with this display, we also provide context information in our user
interface (see Fig. 17), which includes the recording of state information and transition events, to help users with
state annotation. By interacting with the user interface, the user can leverage the correlation matrix and sensor
data representation from both sensing and mental models to further make a collage of the annotated states. Thus,
the collages of states remain semantically understandable to users while becoming more reliable with the aid of
underlying low-level data information.
Fig. 15a shows the correlation matrix of the IoT states derived from the sensing model and human mental

model after the user makes a collage. As we can see, the number of states derived from the sensing model is
close to the number of states annotated by humans. This is because each sensing model-derived state has a
corresponding human mental model-derived state. This can also be demonstrated through Fig. 15b showing
the scatter plot of the sensor data with the TSNE algorithm after making a collage. As we can see, the clusters
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(a) Correlation matrix of the IoT states derived from the
sensing model and human mental model after making all
collages, where each element indicates the percentage of
the human-annotated states in the cluster generated by the
sensing model.
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(b) Sensor data representation in the 2D plane with TSNE
algorithm after human finishes making all the collages.

Fig. 15. By fusing the sensing model with the mental model for collaging, the states of generated FSM show high coherence.
This indicates that human understanding aligns well with the sensing data derived from the sensing model.

derived from the sensing model mainly consist of one state indicated by the human mental model. As a result,
the finalized FSM based on the sensing model and human mental model should have semantic states that are
capable of representing the IoT device’s internal states.

4.4 Verifying
After the user extensively exploit the IoT device’s internal states, IoTProsector can generate a finite state machine
of this IoT device. As this IoT device is deployed in the physical environment, its internal states should be indicated
through the generated finite state machine. To demonstrate the efficiency of the generated finite state machine,
we need to verify that IoTProsector can accurately probe the IoT device’s state with the well-fused sensing model
and human model obtained in the above sections.

To do so, IoTProsector utilizes the generated finite state machine to train a classifier. Specifically, the statistical
features derived from Sec 4.2 are used as data inputs and the annotations of the states serve as labels. During the
verification, as the user interacts with the IoT device over time, the generated side-channel information can be
used to predict the current IoT state with the well-trained classifier. Fig. 16 showcases the step-wise verification
when the user interacts with the Google Home smart speaker. The top figure shows the state transition of the
Google Home smart speaker during the interaction and the bottom figure shows the over-time variation of the
Google Home smart speaker’s finite-state machine. As we can see, when the speaker is powered up, it enters the
waiting-for-keyword state. After we say the keyword (i.e., ’OK Google’), it enters the waiting-for-command state.
After we ask it to play music (i.e., say a command), it enters the playing-music state. During this process, the
colored node in the finite state machine generated by the sensing model and human mental model indicates the
Google Home smart speaker’s current state and the other states are indicated by the white nodes.
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Fig. 16. Step-wise verification for the Google Home smart speaker. The top figure showcases the Google Home smart
speaker’s three states when we interact with it over time. The bottom figure shows the finite state machine of the Google
Home smart speaker over time. As we interact with the Google Home smart speaker, its state changes over time which is
indicated by the colored node in the finite state machine.

5 IMPLEMENTATION

Hardware and Software. IoTProsector utilizes a combination of power consumption, network traffic, and
emanations to sense the internal states of IoT devices. The experimental setup is shown in Fig. 1. We use a
signal hound [9] for spectrum sensing to extract the emanations from the device. We use a power sensor (i.e.,
ACS172 [1]) connected with the Arduino to measure the real-time power consumption of the IoT device (e.g.,
Google Home smart speaker [6], Google AIY voice kit [4]). We use TShark [20] to collect real-time network
traffic data from the IoT device. The data is streamed to a desktop, where features are extracted in real-time
and used to run the sensing model and human mental model for the IoT device’s internal state probing. To
have a well-trained machine-learning model for IoT state probing, we collect 100 measurements across three
side-channel information for each IoT device’s state. Then, we simply split the collected dataset into 80% for
training and 20% for testing. We evaluate the performance of our system with two white-box IoT devices (i.e.,
Google AIY voice kit and vision kit) and one black-box IoT device (i.e., Google Home smart speaker). In our
evaluation, we explored three states for the Google AIY vision kit and five states for the Google AIY voice kit.
Since we conducted a user study to explore the states of the Google Home smart speaker with 10 volunteers,
the explored IoT states should be different for different volunteers depending on their understanding of the IoT
device’s states.
User Interface Design. To assist the users in probing the internal states of IoT devices, as shown in Fig. 1, we
develop a graphical user interface (GUI) which is illustrated in Fig. 17 consisting of an interactive chart workspace,
context information, and visually plotted sensor data to assist user’s state annotation and collaging. We utilize
the React framework [7] in JavaScript for the front-end design and FastAPI [3] in Python for the back-end design.
For the front-end design, we employ D3.js [2] and React Flow [8] to illustrate the finite state machine, correlation
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Select a stateInteractive chart of
finite state machine
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Highlight in-group
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different groups

Fig. 17. IoTProsector’s graphical user interface consists of an interactive chart workspace for users to annotate and collage the
states, context information, and visually plotted sensor data to assist user’s state annotation and collaging. The zoomed-out
figure shows the state collaged by humans based on the sensor data representation and context information.

matrix, and scatter plot that can showcase the data distribution in the 2D plane to assist the user’s state annotation
and probing.
Experimental Settings for White-box IoT State Sensing. We evaluate the performance of the white-box IoT
state sensing with Google AIY vision and voice kits. Since we can program these two kits, we can obtain the
ground-truth IoT states based on what pieces of the codes are executed. For the sake of simplicity, we obtained
the five ground-truth states of the Google AIY voice kit and three ground-truth states of the Google AIY vision
kit. For each IoT state of Google AIY vision and voice kit, we collect the side-channel information 100 times for
training and testing. We evaluate the performance of the IoT states probing with precision, recall, F1 score, and
confusion matrix using DBSCAN, GMM, and k-means.
Experimental Settings for Black-box IoT State Sensing. We evaluate the performance of the black-box IoT
state probing with commercial off-the-shelf Google Home smart speaker through a user study. More details can
be found in Sec. 6.2.

6 EXPERIMENTAL RESULTS

6.1 White-box IoT Device Probing Evaluation
To obtain the ground-truth of the internal states of IoT devices, we test IoTProsector with open source hardware
(Google AIY voice kit and vision kit). Fig. 29 illustrates the finite-state machine of the Google AIY voice kit. When
the Google AIY voice kit is powered up and enters interaction mode, it first accesses the Internet (i.e., Internet
access state). Then, it waits for the voice commands/queries (i.e., listening state). After we query the Google AIY
voice kit, it enters the speech processing state to understand the commands or queries. Finally, it responds to us
by finding the answers from the Internet.
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Fig. 18. Finite state machine for Google AIY voice kit during the interaction.
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Fig. 19. Multimodal sensor fusion-
based IoT state detection with k-means
for Google AIY voice kit.

�� �� �� �� ��

��������������

����������

�����������������

�����������

�������������������

��!��������

��
 �
��
��
��

���� ��� ���� ���� ���

���� ���	 ��� ��� ���

���� ��� ���� ���� ���

���
 ��� ���	 ��
� ���

��� ��� ��� ��� ���

Fig. 20. Multimodal sensor fusion-
based IoT state detection with DBSCAN
for Google AIY voice kit.
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Fig. 21. Multimodal sensor fusion-
based IoT state detection with GMM
for Google AIY voice kit.
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Fig. 22. F1 score of IoT state detection using k-means, DB-
SCAN, and GMM for Google AIY voice kit.
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Fig. 23. Finite state machine for Google AIY vision kit.

Performance with Google AIY voice kit: Fig. 19, Fig. 20, and Fig. 21 show the confusion matrix for multimodal
sensor fusion-based IoT state probing using k-means, DBSCAN, and GMM algorithms for Google AIY voice
kit. As we can see, multimodal sensor fusion with k-means, DBSCAN, and GMM algorithms can achieve a high
IoT state probing accuracy of around 0.93. Fig. 22 shows the F1 score for IoT state probing using K-means,
DBSCAN, and GMM algorithms. From the results, it is clear that multimodal sensor fusion-based IoT state probing
performs better than power consumption-based, network traffic-based, and emanation-based IoT state detection.
Specifically, the multimodal sensor fusion-based IoT state detection with GMM, k-means, and DBSCAN algorithm
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Fig. 24. Multimodal sensor fusion-
based IoT state detection with k-means
for Google AIY vision kit.
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Fig. 25. Multimodal sensor fusion-
based IoT state detection with DBSCAN
for Google AIY vision kit.

�� �� ��

��������������

����������

���������

�������������
��
��
��
�� ���� ��	� ���

��� ��
 ���

��� ��� ���

Fig. 26. Multimodal sensor fusion-
based IoT state detection with GMM
for Google AIY vision kit.
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Fig. 27. F1 score of IoT state probing using
k-means, DBSCAN, and GMM for Google
AIY vision kit.

Precision Recall
GMM 0.88 0.86

KMeans 0.91 0.88
DBSCAN 0.95 0.94
Table 2. Precision and recall with
k-means, GMM, and DBSCAN for
Google AIY Voice Kit’s state probing.

Precision Recall
GMM 0.69 0.69

KMeans 0.69 0.69
DBSCAN 0.93 0.92
Table 3. Precision and recall with
k-means, GMM, and DBSCAN for
Google AIY Vision Kit state probing.

can achieve an F1 score of 0.86, 0.84, and 0.94 respectively, which is larger than the network traffic-based, power
consumption-based, and emanation-based IoT state detection. This is because multimodal sensor fusion leverages
multiple side-channel information for IoT state probing, thereby differentiating the internal IoT state. Table 2
presents the precision and recall with GMM, k-means, and DBSCAN for Google AIY Voice Kit state detection. As
we can see, the best precision and recall are provided by the DBSCAN algorithm for the kit’s state detection,
which is 0.95 and 0.94 respectively. This is because the DBSCAN algorithm can automatically detect the cluster
number and handle the arbitrary-shaped clusters.
Performance with Google AIY vision kit: The Google AIY vision kit has three states: power-off state, without
face detection state, and with face detection state. The state machine of the Google AIY vision kit is shown in
Fig. 23. Note that the Google AIY vision kit does not introduce any network traffic, as all the computation is
locally in the vision kit. This further motivates us to use a multimodal sensor fusion-based method for internal
IoT state probing. Fig. 24, Fig. 26, and Fig. 25 present the confusion matrix for multimodal sensor fusion-based
IoT state detection with k-means, GMM, and DBSCAN for Google AIY vision kit respectively. As we can see,
the classification accuracy for multimodal sensor fusion-based IoT state detection with k-means, GMM, and
DBSCAN is 0.69, 0.69, and 0.92 respectively. This is because the DBSCAN algorithm can automatically identify
the cluster number and well represent the arbitrary-shaped clusters. Fig. 27 presents the F1 score of IoT state
detection using k-means, DBSCAN, and GMM for the Google AIY vision kit. As we can see, the best F1 score of
0.92 is provided by the multimodal sensor fusion method with the DBSCAN algorithm. The multimodal sensor
fusion-based methods with k-means and GMM algorithms do not perform better than the single model-based
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# Gender Education Level Experience of
working with IoT device

Experience with
smart speaker

P1 Male Undergraduate No No
P2 Female Undergraduate No No
P3 Male Graduate Yes No
P4 Male Graduate No No
P5 Male Undergraduate No Amazon Alexa
P6 Male Graduate No No
P7 Male Graduate Yes Xiaomi Mi
P8 Male Graduate No No
P9 Male Graduate Yes Google Home
P10 Male Undergraduate No Google Home

Table 4. Information of participants: major, research, or interaction experience with IoT devices and smart speakers.

methods due to the performance limitations of k-means and GMM algorithms. Table 3 presents the precision and
recall with GMM, k-means, and DBSCAN for Google AIY Vision Kit state detection. As we can see, the DBSCAN
algorithm can provide a precision of 0.93 and a recall of 0.92 for the vision kit’s state detection, which is better
than the GMM and k-means algorithms due to its automatic cluster number estimation and arbitrary-shaped
clusters characterization.

6.2 User Study
To evaluate the effectiveness of the probing process supported by IoTProsector, we conducted a user study with
10 college students. In our study, we selected the Google Home smart speaker as the black-box IoT device to
examine the following research questions:
RQ1 What are IoTProsector’s effects on users’ performance in probing internal states of IoT devices?
RQ2 What are IoTProsector’s effects on the users’ cognitive load of probing internal states of IoT devices?
RQ3 How do users think about the probing process using IoTProsector?

6.2.1 Ethical Considerations. Our study was approved by our institution’s IRB. All participants consented to
have their data recorded and reported in a scholarly publication. Collected data were anonymized after collection
and stored in a private location accessed only by the authors.

6.2.2 Procedure. The user study consists of four steps: pre-interview, system introduction, probing, and post-
interview.

• Pre-interview. After the participants signed the consent forms, we first conducted an interview about
the participants’ background, demographic information, prior experience of using IoT devices, etc.

• System introduction. Then, we set up a Google Home smart speaker with IoTProsector in a typical
indoor office environment. We gave each participant a 15-minute tutorial, during which we systematically
introduced them to all the functions of IoTProsector, provided them with an instruction table listing all
feasible interactions with the Google Home smart speaker [5], and allowed them to try these interactions
to become familiar with the device.

• Probing. After the participant was familiar with the user interface and system, the participant was
presented with the graphical user interface as shown in Fig. 17 and instructed to interact extensively with
the IoT device. He/she was encouraged to explore a wide range of interactions, annotate and refine the
FSM to match the mental model and sensing model, and subsequently verify the generated FSM.
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Granularity
Number of explored states

Number of collaged states

Time efficiency
(minutes)

Exploring

Collaging

Verifying

Total

Correctness State verification accuracy
(correct verification/total verification)

8.2

Average Median Std

9.0 1.3

4.8 4.5 1.7

9.0 9.5 2.4

7.6 8.0 2.5

3.0 3.0 1.0

20.1 19.0 4.5

5.8/8.2

Table 5. Evaluation of user study on probing time in different
probing stages, number of explored/collaged states, and state
probing accuracy.

Mental demand

Physical demand

Temporal demand

Performance

Effort

Frustration

5.6

Average Median Std

5 3.5

3.6 2 2.8

3.7 5 2.5

4.1 4 2.6

4.7 5 3.2

3.0 2 2.6

Table 6. Evaluation of user study with NASA task load index.

• Post-interview. After the probing was done, the participant was asked to complete a NASA TLX test [25].
We also interviewed the participants about their feelings and rationale of operations based on the
participant observation of the probing process.

6.2.3 Participants. We recruited 10 college students as participants. Table 4 enumerates a breakdown of the
participant information. Participants are all majoring in STEM fields (i.e., electrical and computer engineering,
computer science and engineering, or data science). One participant self-identified as female, and the remaining
students identified as male. Participants P1 and P3 had research experience working with IoT devices. Participants
P5 and P8 had used Google Home smart speakers. The other participants either had experience with similar
devices (i.e., Amazon Alexa smart speaker, Xiaomi Mi smart speaker) or were not familiar with IoT devices.

6.2.4 Quantitative Results. To answer RQ1 and RQ2, we conducted a quantitative analysis.
Performance. Table 5 shows the performance of the user study quantitatively. Specifically, we mainly exploit
three aspects of the results: (1) quantity of annotated states across different modules, (2) probing time across
different modules of IoTProsector, and (3) accuracy of states probing when the participants use IoTProsector for
IoT states annotation. As we can see from the table, all Participants finished probing the Google Home smart
speaker in a relatively short time (i.e., an average time of 20.1s, a median time of 19.0s, a time standard deviation
of 4.5s) with internal states probing (i.e., an average time of 4.8s, a median time of 4.5s, a standard deviation time
of 1.7s). Furthermore, participants can verify the IoT states with an accuracy of 5.8/8.2, where 5.8 indicates the
average number of correct verified states and 8.2 indicates the average number of states probed by the participants
using IoTProsector.
Cognitive Load. Table 6 shows the statistical results of the participants probing the Google Home smart speaker
with the metrics from the NASA task load index on a scale of 1 to 21, where a lower score indicates a lower
cognitive load). This index assesses the overall workload of a participant by measuring performance across six
dimensions: (1) mental demand, (2) physical demand, (3) temporal demand, (4) performance, (5) effort, and (6)
frustration. The average, median, and standard deviation value across these six dimensions is around 4.12, 3.83,
and 2.87 respectively. As we can see, the task load measured by these metrics is quite low due to the friendly GUI
design, indicating IoTProsector’s capability of helping participants probe the IoT device’s internal states with low
cognitive load.

6.2.5 Qualitative Feedback. To answer RQ3, we utilized recordings and transcripts of the interviews, conducted
inductive thematic analysis [17], and held meetings to review the analysis process and discuss the findings.
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(a) Final FSM from P2. (b) Final FSM from P6.

Fig. 28. Users may have different interpretations of the IoT device’s internal states. This variation may be partly due to the
lasting impact of their initial mental models, which affect the way users revise their understanding [16].

• Transparency. IoTProsector’s ability to enhance the transparency of IoT devices, especially the efficiency
of probing and verifying the black-box IoT device’s states was acknowledged by the participants. One of
the key aspects they appreciated was the generated FSM, which made the understanding of the device’s
functioning more accessible. As P9 mentioned, "I have used the Google Home smart speaker before, but
I never got to know what it actually does inside, its operations are often opaque. This system allows me to
understand the device’s functioning through the finite state machine". The transparency is further enhanced
by the use of transition events. P2 noted the utility of this feature, saying, "With the transition event, I
can easily recall and track the interactions with the device. It also gives me a clearer understanding of how
the device responds to different inputs, allowing me to establish a meaningful connection between different
internal states of the IoT device". Another important design is the data representation. As P5 expressed,
"The abundance of data makes me feel a bit overwhelmed at the beginning. Nevertheless, being able to see
the low-level data and my annotations side by side truly enhances my comprehension of the IoT device". P1
also commented on its effectiveness, stating, "The scatter plot clearly illustrates the low-level data with its
interactive attributes and color encoding, which enables me to probe the internal states of the IoT device in a
more intuitive way. To be more specific, the interactive features provide me with rapid feedback dynamically
during collaging, and the color encoding enhances the clarity of data representation, making it easier to
identify and interpret different states".

• Learnability. All participants discussed the learnability of IoTProsector. Some people found this system,
especially the friendly graphical user interface, easy to learn and efficient to probe the IoT device’s state.
P9 said, "The system is new to me, but the workflow is quite reasonable and intuitive". Conversely, some
participants shared a different opinion that "It took me some time to realize what I should do" (P8). This
result echos the fact that only three out of the ten participants had experience working with IoT devices.

• Usability. When discussing the usability of IoTProsector, the design of the user interface received
appreciation from participants (P1-6, P9, P10).P6 noted "UI is nice and user-friendly", while P7 mentioned,
"the layout and interaction design of the UI make it easy to use".

• Diversity of human mental models. Participants’ answers vary when asked about how they annotate
states during the exploration stage. Some participants annotated the states based on their understanding
and observation. For example, P1 mentioned that "It’s mainly based on my intuition and understanding",
and P6 noted that "I annotate them based on my observation about what the device will perform". However,
other participants like P7 relied on different information, saying, "from the actions I conducted, I can know
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the state it enters". This result echoes the situation of semantic redundancy during the exploration stage
and implies that the FSM is highly personalized. It also indicates the necessity for a human-in-the-loop
design approach, rather than a one-size-fits-all solution.

• Integration of sensing model and mental model. Furthermore, to explore how the human-in-the-loop
design improves understanding of black-box IoT devices, we asked participants about how they balance
the mental model and the sensing model during collaging. A few participants (P1, P3, P4) preferred
relying solely on a single model, with statements like "I collage the states with the same semantics" from
P4, or "I just collage the states based on the scatter plot" by P1. However, the majority (P2, P5-10) actively
combined both models. For instance, P5 described their approach as "I make high-level groups based on my
understanding, and then refer to the sensing model for verification". This result underscores the significant
roles both the sensing model and the mental model play in the probing process. It also indicates our
design objective of incorporating human intelligence alongside sensing techniques within the probing
framework.

7 RELATED WORK

Side-channel sensing. Many studies have investigated the side-channel information of IoT devices, such as
power consumption [27], network traffic [12, 15, 23, 39, 47], wireless communication [26, 50], and acoustic
emanations [13, 52]. However, these works cannot characterize the fine-grained IoT states. For example, Light
auditor [27] leverages power consumption measurements to identify the malicious behaviors of exfiltrating
information from smart bulbs, while these malicious behaviors are not classified. Network traffic-based IoT
state prediction is straightforward, as every IoT device needs to have network access, and the network traffic
pattern can be exploited to predict IoT states. For example, IoTAthena [47] leverages the raw time-stamped IP
packets to predict IoT activities in a coarse-grained manner. Emanations from IoT devices have been exploited to
detect the existence of IoT devices (e.g., hidden spy camera detection for human privacy [33]), while they have
never been used for IoT state prediction. Electromagnetic sensing has been widely explored for human-computer
interaction [30–32], which has different intents compared to our EM noise-based IoT state detection. For example,
EM-Sense [32] leverages the EM noise generated by everyday electrical and electromechanical objects to achieve
touch recognition.
IoT program debugging. Programming language technologies have been extensively employed in the realm of
IoT for security and privacy analysis [10]. For instance, TZSlicer [49] introduces a framework that automatically
identifies code segments requiring protection. IOTA [36], a core calculus for IoT automation, facilitates the
development of conflict detection and provenance in home automation programs. IotSan [37] is another framework
that utilizes model checking to pinpoint undesirable cyber states for IoT devices, offering counter-examples to
illustrate the underlying causes. SOTERIA [18] extracts state models from IoT code, assisting in the detection
of security, safety, and functional errors. However, these studies predominantly address IoT device behaviors
through a white-box approach, assuming the availability of the device’s source code. In contrast, our work
focuses on the underexplored area of black-box IoT devices raised in [24] and novel device mechanisms, aiming
to enhance support for black-box debugging requirements.
Tools for IoT privacy. Considerable efforts have been devoted to creating new tools that strengthen privacy
protection in the IoT domain [22, 29, 51]. For example, Ren et al.[40] utilized multidimensional analysis to
characterize information exposure in IoT devices, emphasizing the importance of privacy preservation. Numerous
studies[11, 14, 34, 35] have categorized IoT devices by analyzing network traffic patterns for authentication
purposes. Additionally, Saidi et al.[42] developed a scalable approach to detecting IoT devices in real-world
scenarios using network traffic data. IoT Inspector[23], an open-source tool, facilitates the examination of network
traffic for IoT devices in home networks to ensure data privacy. These studies typically examine general IoT
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privacy on a macro level, focusing on high-level device behavior and the data transmitted. In contrast, our work
aims to support privacy enthusiasts at a micro level, enabling them to debug the fine-grained internal state of
each individual device.

8 CONCLUSION
In this paper, we design IoTProsector, a system that can probe the fine-grained internal states of black box IoT
devices using side-channel information such as power consumption, network traffic, and emanations. Further-
more, we design an annotation interface to semantically probe and verify the IoT device’s internal states. Our
experimental results and user study demonstrate the feasibility of using side-channel information to help users
form more accurate mental models.
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A IOTPROSECTOR’S GUI TOOL

A.1 Code for IoTProsector
We plan to release the code of IoTProsector’s design and make it publicly available.

A.2 Instruction Table for Google Home Smart Speaker
As part of IoTProsector’s GUI, we show the instruction table of the Google Home smart speaker to instruct the
users to interact with the Google Home smart speaker as shown in Fig. 29.

B INTERVIEW QUESTIONS

B.1 General BackgroundQuestions
• First name [Study use only]
• Gender
• Education level
• Major

B.2 Prior Experience of Using IoT Devices
• Do you have experience in working with IoT devices? If "yes", what is it about?
• Do you use any IoT device in your daily life?
• Have you used Google Home smart speaker before? If "no", have you used any other smart speakers
before?

B.3 Open-Ended FeedbackQuestions
• How do you annotate states during exploring? What criteria do you use?
• What criteria do you use when you collage states?
• Do you find the sensing model useful during this process? Why or why not?

– When do you refer to the sensing model?
– What type of information does the sensing model provide to you?
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Fig. 29. The instruction table shows the users how to interact with the Google Home smart speaker.

• Do you find the mental model useful during this process? Why or why not?
– When do you refer to the mental model?
– Do you refer to the context information in the UI? If so, when?
– What type of information does the mental model provide to you?

• Have you encountered any conflict between your mental model and the sensing model?
– What is the conflict? When does it occur?
– How do you deal with this conflict?

• What do you think of IoTProsector?
– Do you find it easy to use? Why?
– What do you think of this workflow?
– Do you think IoTProsector helps you understand the IoT device? If so, how?
– What do you think can be improved in IoTProsector?

22


	Abstract
	1 Introduction
	2 Overview
	3 IoTProsector: Sensing
	3.1 Side-channel Information Characterization
	3.2 Feasibility Study
	3.3 Machine Learning-based IoT State Probing

	4 IoTProsector: Annotation
	4.1 Exploring
	4.2 Modeling
	4.3 Collaging
	4.4 Verifying

	5 Implementation
	6 Experimental Results
	6.1 White-box IoT Device Probing Evaluation
	6.2 User Study

	7 Related work
	8 Conclusion
	References
	A IoTProsector's GUI Tool
	A.1 Code for IoTProsector
	A.2 Instruction Table for Google Home Smart Speaker

	B Interview Questions
	B.1 General Background Questions
	B.2 Prior Experience of Using IoT Devices
	B.3 Open-Ended Feedback Questions


